Geovis Course Assignment, SA8905, Fall 2015 (Rinner)
Author: Austin Pagotto
Link to Web app: http://arcg.is/1Yf8Yqn
(Note: project may have trouble loading using Chrome – try Internet Explorer)
Project Idea:
The idea of my project was to comprehensively map the past two Canadian federal election results. When looking for visualization methods to compare this data I came across the Swipe feature on the ArcGIS Online story maps. Along with all the interaction features of any ArcGIS online web map, this feature lets the user swipe left and right to reveal either different layers or in my case different maps. As you can see in the screenshot below the right side of the map is showing the provincial winners of the 2015 election while the left side of the map is showing the provincial winners of the 2011 election. The middle line in the middle can be swiped back and forth to show how the provincial winners differed in each election.
Project Execution:
The biggest problem in executing my project was that the default ArcGIS online projection is web Mercator, which greatly distorts Canada. I was able to find documentation from Natural Resources Canada explaining how Lambert Conformal Conic basemaps can be uploaded to an ArcGIS online map and replace the default basemaps.
Another problem with my visualization of the project was that when zoomed to a national scale level, a lot of the individual polling divisions became impossible to see. This creates an issue because each polling division is designed to have a somewhat equal population count in them. So the small ones aren’t less important or less meaningful than the big ones. To solve this, when zoomed out, I changed the symbology to show the party that had won the most seats in each province, so it would show the provincial winner as seen in the previous screenshot. When zoomed in however the individual polling divisions become visible, showing the official name at increased zoom levels. The years of each election were added to the labels to help remind the user what map was on what side.

The methodology I used to create this project was to create two different online maps, one for each election year. Then I created the swipe web app which would allow both of these maps to be loaded and swipeable between the two. It was important here to make sure that all the settings for each map were the exact same (colors, transparency and attribute names).
The data that is shown on my maps were all downloaded from ArcGIS online to Arcmap Desktop and then zipped and reuploaded back to my project. It was important to change my data’s projection to Lambert Conformal Conic before uploading it so that it wouldn’t have to be reprojected again using ArcGIS online.
This project demonstrated how web mapping applications can make visualizing and comparing data much easier than creating two standalone maps.
Data Sources: Projection/Basemap information from Natural Resources Canada
Election Data from ESRI Canada (downloaded from ArcGIS Online)
Link to Web app: http://arcg.is/1Yf8Yqn


Retrieved from: 
The front and back sides of the cube are shown in the photos to the left and below.
r each layer and the sides of the box were cut out, the boards were then ordered in chronological order. The boards were then painted in various shades of blue, as shown in the photo to the left. The corresponding year was then written onto the model board with either silver or black permanent marker (whichever color was more visible on the painted board).
The key to this step was ensuring that each of the layers was put in chronological order, and that each layer was the same distance apart. Ensuring that each layer was the same distance apart (1.25 inches to be exact) allowed the model to accurately depict the shrinking of the ice cap.
to appear as if an individual opened the top layer to look at the depiction of the shrinking polar ice cap through the 3D model, as shown in the photo below. The final dimensions of the 3D Paper model cube project are 8” x 10” x 10”.