Visualizing Freshwater Resources: A Laser Cut Model of Lake Erie with Water Volume Representations

Author: Anna Brooker

Geovisualization  Project Assignment @RyersonGeo SA8905, Fall 2018

Freshwater is a limited resource that is essential to the sustenance of all life forms. Only 3% of the water on earth is freshwater, and only 0.03% is accessible on the surface in the form of lakes, streams, and rivers. The Great Lakes, located in Southern Ontario and along the US border, contain one fifth of the surface freshwater. I wanted to visualize this scarcity of freshwater by modelling Lake Erie, the smallest of the Great Lakes. Lake Erie is 6th largest freshwater lake in the world, but is has the smallest water volume out of the Great Lakes. I decided to create a laser cut model of the lake and use water spheres to represent its proportion of the world’s surface freshwater resources. I used the infographic from Canadian Geographic for reference.

Process:

  • Retrieve bathymetric imagery and import into ArcScene
  • Generate contours lines for every 20m of depth and export them each into individual CAD files
  • Prepare the CAD files in an Adobe Illustrator layout file to optimize them for laser printing
  • Paint and assemble the laser cut layers
  • Create spheres out of clay to scale with the model

The following images show the import of the bathymetric imaging and contour retrieval:

The bathymetry data used was collected in 1999 by the National Oceanic and Atmospheric Association and comes in a raster file format. They were retrieved from Scholar’s Geoportal. I used a shapefile of the Lake Erie shoreline from Michigan’s GIS Open Data as a mask to clip the raster imaging to only the extent of the lake surface. I then created 20m contours from the raster surface. I exported each of the 3 contour vectors into individual shapefiles. These were added to the scene and exported again as CAD files to be able to manipulate them in Adobe Illustrator and prepare them on a template for laser cutting.

The screenshots above show the template used for laser cutting. The template was downloaded from the Hot Pop Factory homepage. Hot Pop Factory is the service I used for laser cutting the plywood layers. I used their templates and arranged my vector files to reflect the size I want the model to be, 18″x7″. I added the rectangles around each contour to ensure a final product of a rectangular stacked model. I then sent this to the Factory for cutting. The photos below show what I received from Hot Pop.

Lake Erie is incredibly shallow with maximum depth of 64m. In order to show the contours of the lake I needed to exaggerate the depth. Limited by the thickness of the materials available to me, the final model had an exaggerated depth of approximately 130% at its deepest point. The final result of this exaggeration allowed me to create three layers of depth to Lake Erie and make it more visually engaging. I included as a part of my model a flat cut out of Lake Erie, which is what the model would have looked like if I had not exaggerated it.

The water volume spheres were created using a material called porcelain clay. This air dry medium has a slightly translucent finish. I stained the clay with blue oil paint so that it would intuitively represent water. The size of the spheres is based on the information in the Canadian Geographic infographic linked in the introduction to this tutorial. The diameter of the spheres was made to scale with the scale bar on the models. A limitation with this model is that the scale bar only refers to the lateral size of the lake and spheres, and does not refer at all to the depth of the model.

The photos above show the final product. The photo on the right shows the scale bar that is included on both parts of the model. I painted the interior layers in blue, the top two layers in the same shade. The third layer was slightly darker, and the deepest layer was the darkest shade of blue. I chose to paint the layers in this way to draw attention to the deepest part of the lake, which is very small area. I attached the layers together using wood glue and laid them beside each other for display.  I painted the 3D and 2D models in slightly different hues of blue. The 2D model was made to better match the hue of the water spheres to visually coordinate them. I wanted the spheres to be distinct from the 3D model so that they would not be interpreted as being representative of the water volume of an exaggerated model.