The History Of Chicago’s Homicides For The Last Two Decades

By: Charan Batth

Geovis Project Assignment @RyersonGeo, SA8905, Fall 2021

Introduction

The crime rate for the city of Chicago is significantly higher than the US average. In 2016, Chicago was responsible for nearly half of the homicides increase in the US.

A time series interactive dashboard will be used to visualize and analyze the distribution of homicides across Chicago for the last two decades. We will create this dashboard using Tableau Desktop, which is an interactive data visualization and analytical tool. In addition to the dashboard, we will create two visualizations: treemap and line chart. Treemap will be used to visualize aggregated homicides across police districts. The line chart will visualize the number of homicides per month.

Data

The data used to produce the Interactive Dashboard was obtained from the Chicago Data Portal. The dataset consists of 7,424,694 crimes between 2001 to 2021. However, since our crime is focused on homicides, the data was filtered by setting the field Prime Type to be equal to HOMICIDE and then the data was downloaded as a CSV file.

I will go through the step-by-step process of creating the time-series interactive dashboard, the dashboard can be viewed here for reference.

Creating the Interactive Dashboard

To get started on creating the interactive dashboard and the visualizations. We will first import the data, since our dataset is in a CSV format we will select the Text File under the To a File Option. After opening the data, you will see a screen showing all the fields in the CSV file and on the bottom left beside Data Source, you will see a tab called Sheet 1 (highlighted in orange), we will click on it to begin the process of creating the dashboard. The Worksheet tabs will be used to create the map and visualizations and the Dashboard tab will be used to create the dashboard.

In order to create a dot density map showing homicides across Chicago, we need to plot the latitude and longitude coordinates for each homicide. We do this by dragging the Longitude field into the Columns tab and the Latitude field into the Rows tab. We then set both fields to Dimension, by right-clicking on the fields. A map will automatically be created however, there are two minor issues with the map, shown below.

Our map shows 1 null point (displayed on the bottom right of the map) and there is a random point in Missouri.

In order to fix these issues, we will first remove the null point by clicking on 1 null and selecting the Filter Data. To remove the random point located in Missouri, we will right-click on the point and select Exclude. This will remove the point from the map, and our map extent will automatically zoom to the Chicago area.

Creating Time-series Map

To create the time-series map, we will drag the Year field into the Pages card. This will create a time slider that will allow you to view the dot density map for any chosen year. The time slider also allows the user to animate the map, by clicking on the loop button and the animation can be paused at any time.

For our dot density map, we will show specific attributes for each homicide location on the map. This can be accomplished by dragging the fields into the Marks card. For our map, we will show the following fields: Block, Description, District, Location Description, and Date.

To make our map look aesthetic, we will change the theme of our map to Dark. This can be done by going to the header Map, hovering over to Background Map, and selecting Dark. To better visualize the locations of the data points, we will add zip code boundaries to the map. To do this, we will go to the header Map and from there we will choose Map Layers and then select the Zip Code Boundaries under the Map Layers pane (this will appear on the left side of the sheet). Lastly, we are going to change the colour and size of the data points. This can be done by going to the Marks card and selecting the Color and Size option.

Visualizations

Treemap

We will now create the visualizations to better understand the distribution of homicides in Chicago. To begin the process, we will create a new Worksheet and we will name it Treemap. To create a treemap, we will first drag the Year field into the Page card, as we are creating a time-series interactive map. Since we want to see how homicides vary across police districts, we will drag the District field into the Marks card. To show the homicides, we will drag the Primary Type field onto both the Color and Size options in the Marks card. We will then set the Primary Type field to Measure and choose Count, as we want to show aggregated homicides. The final step is to make our worksheet transparent, so we could add it to our interactive map. This is done by going to the header Format and selecting Shading. In the Formatting pane, we will set the Worksheet and Pane background colour to None.

Line Chart

We will create a new Worksheet and name it chart. Our data does not contain the month the incident occurred, but we have the Date when the incident occurred. So, in order to extract just the month, we will need to create a new field. This can be done by going to the Analysis header and choosing Create Calculated Field. We will give the field an appropriate name, change the name Calculation1 to MonthOfIncident. To extract the month we first need to truncate the Date field, as it contains both the date and time. We will use the LEFT function which allows us to truncate a string type specified by the length. The date consists of 10 characters (dd/mm/yyyy), so our query would be LEFT([Date], 10). Next, we need to extract the month from the truncated string, so we will use the built-in function, called MONTH, which returns a number representing the month. However, the MONTH function requires its parameter data type to be a date. So we need to convert our truncated string date to date, we can do this by applying the DATE function on the LEFT function and finally applying the MONTH function on the entire expression. Thus our expression for finding the month is:

Now, we can finally begin the process of creating the line chart. As we are making a time-series interactive map, we will also need to make a time-series line chart. So, we will drag the Year field into the Pages card, as this will be part of our time-series interactive map. Next, we will drag the MonthOfIncident field into the Columns tab and Primary Type into the Rows tab. Since we want to show the total number of homicides, we will set the Primary Type field to Measure and select Count. We will make this worksheet transparent as well, so we will go to the header Format and select Shading. In the Formatting pane, we will set the Worksheet and Pane background colour to None.

Creating the Dashboard

To create our dashboard, we will click on the Dashboard tab, right beside the Worksheet tab. In the dashboard, we can add all the worksheets we have created. We will first add the interactive map followed by the visualizations. To display the visualizations on top of the map, we need to make them float. So, we will select one of the visualizations and hover over to More Options (shown as a downward arrow) and click on Floating, repeat this process for the other visualization. You can also change the size of the dashboard by going to the Size pane, the default size is Desktop Browser (1000 x 800), we will change it to Generic Desktop (1366 x 788). Last but not least, we will publish this dashboard, by going to the Server -> Tableau Public -> Save to Tableau Public As. Tableau Public allows anyone to view the dashboard and allow anyone to download it and specific permissions for the dashboard can be applied.

Limitations and Future Goals

One of the main limitations that occurred during the process of creating the dashboard was gathering the data. First, I had downloaded the entire CSV file containing all different types of crimes. However, when I filtered the Primary Type to HOMICIDE in the Filters card, a huge amount of data for homicides was missing. So, I then decided to directly connect the dataset to Tableau using ODATA Server. It took me a couple hours to connect to the server, just to run into the same issue. I then tried exporting the data through SODA API from the portal, I was able to find raw data for homicides however, it contained partial data. After a while, I figured out I had to directly filter the table in the Chicago Data Portal in order to download the entire data for Chicago homicides.

Another limitation I faced with the data was creating the visualizations. Originally I intended on creating a highlight table to show how homicides varied across police districts and community areas. However, due to the data having null values for community areas, the visualization couldn’t be created. Furthermore, I was only able to create basic visualizations, as the data did not have any interesting variables to help analyze the homicide distribution. For instance, if each homicide incident included a Zip Code, it could have been used to explain the spatial pattern much better rather than using police districts to show how homicides vary across it.

If I was to expand on this project, I would try to incorporate all different crime incidents from 2001-2021 to see Chicago’s overall crime history. In addition to this, I would find demographic data for Chicago such as population, education, and average family income to help understand the spatial pattern for the distribution of crimes.

Assessing Speed Camera Effects on Collisions in Toronto

Link to project: https://ryerson.maps.arcgis.com/apps/dashboards/e09127998c21447ea85ce713c1502fe4
Author: Steven (Shucheng) Wang
Geovis Project Assignment @RyersonGeo, SA8905, Fall 2021

Introduction

In 2017, 50 Automatic Speed Enforcement (ASE) cameras were installed throughout Toronto. These cameras work by taking pictures of vehicles which are speeding, and then issuing a fine to the owner of the vehicle. 2 Cameras are allocated to each ward located mainly near school zones for a total of 50, which will eventually be rotated out for a different set of 50 in different locations. This strategy is meant to reduce collisions by having people slow down in areas where the ASE cameras are present.

Figure 1: ASE camera in Toronto

To visualize whether the installation of these cameras has made a difference on collisions in Toronto, I decided to use ArcGIS Dashboards. ArcGIS Dashboards is a tool that presents spatial data and associated statistics in an interactive format, allowing the user to get the answers to questions that they want.

In order to put this together, I collected collision data from the Toronto Police Public Safety Data Portal which includes data on collisions throughout Toronto from 2006 until 2021. I also collected data on the ASE locations from the Ontario Open Data Portal, and opened both datasets in ArcGIS Online to edit their symbology before adding it to a dashboard.

FIgure 2: Preparing the data for use in the dashboard

Now that the map was ready, I started to configure the actual dashboard. The main elements that I considered essential to include were:
• A filter system, to allow users to filter collisions under certain conditions
• A pie chart, to allow users to visualize the percentage of each type of collision depending on their filters
• A line or bar graph to allow users to see the distribution of collisions temporally.
These can all be easily added to a blank dashboard and configured using the “+” button on the ArcGIS Dashboards top header. The final dashboard with all the previously mentioned elements and the map frame can be seen below:

Figure 3: Complete dashboard

Dashboard Elements and Functions

The first element we will be looking at is the side panel on the left, which contains the date selector as well as multiple category selectors for different attributes. Each one opens an accordion-style menu when clicked, displaying all available filters for that particular category. These filters can be toggled on or off, and the map frame in the centre will reflect any filters made.

Figure 4: Visibility selector with rain toggled

The next element is the serial chart at the bottom of the dashboard, which contains two graphs stacked on top of each other. The first one is a line graph of the collisions by date all the way from 2006 until now, and the second one is a histogram of the collisions per hour based on a 24-hour clock. Both graphs contain a time slider at the top which can be used to zoom in and look at a particular time period in detail. However, the time slider is purely for viewing purposes and will not affect the map.

Specific time periods can also be selected by clicking on the graph and dragging your mouse over them, or by holding CTRL and clicking the time periods as well. For example, if you only wanted to see collisions from 2017 and onwards, you could click and drag your mouse over the part of the line graph where 2017 starts all the way until the far right side. Unlike the time slider, selecting time periods this way will reflect on the map frame.

Figure 5: Serial graphs

The final elements are the legend and the pie chart to the right of the map frame. The legend displays the categorization for each data point, like which ASE camera is currently active vs. planned, or which collisions resulted in fatalities vs. injuries. The pie chart is stacked on top of the legend and displays the distribution of collision type. Similar to the serial charts, the pie chart will adjust to fit the map extent and the filters chosen. However, the legend is static and will not change regardless of filters or map extent.

Limitations & Conclusion

While a dashboard like this can be convenient in many ways, there are some limitations. For example, for the serial graphs there is no indication in the UI that time periods can be selected at all. I only found out about the function when I accidentally clicked on it; before, I had assumed that the time slider would provide that function and was confused why the data points on the map did not change when I adjusted the time slider. Additionally, it is much more difficult to see when time periods have been selected on light mode than on dark mode, which is why I set this dashboard to dark mode.

Another limitation is that there is no real way to conduct spatial analysis beyond the functions outlined earlier. Common tools like creating buffers or finding intersections that would be present in ArcMap/ArcGIS Pro/QGIS are nowhere to be found. You could do these analyses in those programs, create a layer from said analyses, and then import it into a webmap as a layer before adding it to a dashboard, but that would require you to rework the entire dashboard.

Overall, dashboards are a convenient way of allowing users who aren’t familiar with GIS to manipulate and visualize spatial data. It can be a great way to simplify data and create a neat tool that can identify trends or statistics at a glance. However, it is important to note that due to its limitations, its utility will depend greatly on your use case.

Under Construction Commercial Real Estate in Toronto Market

GeoVis Project @RyersonGeo, SA8905, Fall 2021, Mirza Ammar Shahid

Introduction

Commercial real estate is crucial part of the economy and is a key indicator of a region’s economic health. In the project different types of Under constriction projects within the Toronto market will be assessed. Projects that are under construction or are proposed to be completed within the next few years will be visualized. Some property types that will be looked at are, hospitality, office, industrial, retail, sports and entertainment etc. The distribution of each property type within the regions will be displayed. To determine the proportional distribution within each region by property type. Software that will be used is Tableau to create a visualization of the data which will be interactive to explore different data filters.

Data

The data for the project was obtained from the Costar group’s database. The data used was exported using all properties within the submarket of Toronto (York region, Durham region, Peel Region, Halton region). Under construction or proposed properties above the size of 7000 sqft were exported to be used for the analysis. Property name, address, submarket, size, longitude, latitude and the year built were some of the attributes exported for each property project.

Method

  1. Once data was filtered and exported from the source, the data was inserted into Tableau as an excel file.
  2. The latitude and longitude were placed in rows and columns in order to create a map in tableau for visualization.
  3. Density of mark was used to show the density and a filter was applied for property type.
  4. Second sheet was created with same parameters but instead of density circle marks were used to identify locations of each individual project (Under Construction Projects).
  5. Third sheet was created with property type on x axis and proportion of each in each region in y axis. To show the proportions of each property type by region.
  6. The three worksheets were used to compile an interactive dashboard for optimal visualization of the data.
Figure 1: rows, columns and marks

Results

Density Map Showing Industrial Property type
All Under construction project locations
Regional Distribution by Property type

The results are quite intriguing as to where certain property type constriction dominant over the rest. Flex is greatest in Peel region, Health care in Toronto, Hospitality in Halton, Industrial in Peel, Multifamily in Toronto, Office in downtown Toronto, retail in York region, specialty in York region and sports and entertainment in Durham with new casino opening in Ajax.

The final dashboard can be seen below, however due to sharing restrictions, the dashboard can only be accessed if you have a Tableau account.

Click here to view dashboard

Conclusion

In conclusion, using under construction commercial real estate dashboard can have positive impact on multiple entities within the sector. Developers can use such geo visualizations to monitor ongoing projects and find new projects within opportunity zones. Brokerages can use this to find new leads, potential listings and manage exiting listings. Governments of all three levels, municipal, provincial and federal can use these dashboard to monitor health conditions of their constituency and make insightful policy changes based on facts.

A Glimpse of Short Term Rentals in Calgary Using Tableau

by Bryan Willis
Geovis Project Assignment @RyersonGeo, SA8905, Fall 2020

Project linkhttps://thebryanwillis.github.io/CalgaryShortTermRentals.html

Background

Over the years, many homeowners have decided to turn their place of residence into short term rentals, allowing their place of residence to be rented out for short periods of time. Short term rentals have also seen an increase in popularity due to their better pricing when compared with hotels and the unique neighbourhood characteristics it provides. Although Calgary has not seen the increase of short term rentals as dramatics as that of Toronto and Vancouver, Calgary has continued to see growth in the short term rental supply. The City of Calgary defines a short term rental as a place of residence that provides temporary accommodation and lodging for up to 30 days and all short term rentals in Calgary must legally obtain a business license to run.

This interactive dashboard will aim to highlight some key components related to short term rentals in Calgary such as the locations, the license status, the composition of the housing type and licenses per month

Data

The data used in this dashboard is based off of the Short Term Rentals data set which was acquired through the City of Calgary’s Open Data Portal.

Methods

  1. Data Cleaning – After downloading the data from the open data portal, the data needed to be cleaned for it to properly display the attributes we want. All rows containing NULL values were removed from the data set via MS Excel.
  2. Map Production – After importing the cleaned data into Tableau, we should quickly be able to create our map that shows where the locations of the short term rentals are. To do this, drag both the auto generated into the middle of the sheet which should automatically generate a map with the location points. To differentiate LICENSED and CANCELLED points, drag the License Status column into the ‘Color’ box.
  1. Monthly Line Graph – To produce the line graph that shows the number of licenses produced by month, drag into the COLUMN section at the top and right click on it and select MONTH. For the ROWS section, again use but right click on it after dragging and select MEASURE and COUNT. Lastly, drag License Status into the ‘Color’ box.
Finalized monthly line graph
  1. City Quadrant Table – To create this table, we first need to create a new column value for the city quadrant. Right click the white space under ‘Tables’ and click on ‘Create Calculated Field’ which will bring up a new window. In the new window input RIGHT([Address],2) into the blank space. This code will create a new field with the last two letters in the Address field which is the quadrant. Once this field is created, drag it into the ROW section and drag it again into the ROW but this time right clicking it and clicking on Measure and then Count. Finish off by dragging License Status to the ‘Color’ box.
Finalized City Quadrant Table
  1. Dwelling Type Pie Chart – For the pie chart, first right click on the ROW section and click ‘New Calculation’. In the box, type in avg(0) to create a new ‘Mark’. There should now be an AGG(avg(0)) section under “Marks’, make sure the dropdown is selected at ‘Pie’. Then drag the Type of Residence column into the ‘Angle’ and ‘Color’ boxes. To further compute the percentage for each dwelling type, right click on the angle tab with the Type of Residence column in it then go the ‘Quick Table calculation’ and finally ‘Percent of Total’ .
Finalized pie chart
  1. Dashboard Creation – Once the above steps are complete, a dashboard can be made with the pieces by combining all 4 sheets in the Dashboard tab.
Finalized dashboard with the 4 created components

Limitations

The main limitations in this project comes from the data. Older licensing data is removed from the data set when the data set is updated daily by city staff. This presents the problem of not being able to compare full year to date data. As seen in the data set used in the dashboard, majority of the January data has already been removed from the data set with the except of January 26, 2020. Additionally, there were also quite a few entries in the data set that had null addresses which made it impossible to pinpoint where those addresses were. Lastly, as this data set is for 2020, the COVID-19 pandemic might have disrupted the amount of short term rentals being licensed due to both the city shifting priorities as well as more people staying home resulting in less vacant homes available for short term rentals.

Geovisualization of the York Region 2018 Business Directory


(Established Businesses across Region of York from 1806 through 2018)

Project Weblink (ArcGIS Online): Click here or direct weblink at https://ryerson.maps.arcgis.com/apps/opsdashboard/index.html#/82473f5563f8443ca52048c040f84ac1

Geovisualization Project @RyersonGeo
SA8905- Cartography and Geovisualization, Fall 2020
Author: Sridhar Lam

Introduction:

York Region, Ontario as identified in Figure 1, with over one million people from a variety of cultural backgrounds is across 1,776 square kilometres stretching from Steeles Avenue in the south to Lake Simcoe and the Holland Marsh in the north. By 2031, projections indicate 1.5 million residents, 780,000 jobs, and 510,000 households. Over time, York Region attracted a broad spectrum of business activity and over 30,000 businesses.

Fig.1: Region of York showing context within Ontario, Greater Toronto Area (GTA) and its nine Municipalities.
(Image-Sources: https://www.fin.gov.on.ca/en/economy/demographics/projections/ , https://peelarchivesblog.com/about-peel/ and https://www.forestsontario.ca/en/program/emerald-ash-borer-advisory-services-program)

Objective:

To create a geovisualization dashboard for the public to navigate, locate and compare established Businesses across the nine Municipalities within the Region of York.

The dashboard is intended to help Economic Development market research divisions sort and visualize businesses’ nature, year of establishment (1806 through 2018), and identify clusters (hot-spots) at various scales.

Data-Sources & References:

  1. Open-Data York Region
  2. York Region Official Plan 2010

Methodology:

First, the Business Directory updated as of 2018, and the municipal boundaries layer files, which are made available at the Open-Data Source of York Region, are downloaded. As shown in Figure 2, the raw data is analyzed to identify the Municipal data based on the address / municipal location distribution. It is identified that the City of Markham and the City of Vaughan have a major share.

Fig.2: The number of businesses and the percentage of share within the nine Municipalities of the York Region.

The raw-data is further analyzed, as shown in Figure 3, to identify the major business categories, and the chart below presents the top categories within the dataset.

Fig.3: Major Business Categories identified within the dataset.

Further, the raw data is analyzed, as shown in figure 4, to identify the businesses by the year of establishment, and identifies that most of the businesses within the dataset were established after the 1990s.

Fig 4: Business Establishment Years identified within the dataset.

The Business addressed data is checked for consistency, and Geocodio service is used to geocode the address list for all the business location addresses. The resulting dataset is imported into ArcGIS Map, as shown in figure 5, along with the municipal boundaries layers and checked for inconsistent data before being uploaded onto ArcGIS Online as hosted layers.

Fig.5: Business Locations identified after geocoding of the addresses across the York Region.

Once hosted on ArcGIS Online, a new dashboard titled: ‘Geovisualization of the York Region 2018 Business Directory’ is created. To the dashboard, the components are tested for visual hierarchy, and careful selection is made to use the following components to display the data:

  1. Dashboard Title
  2. Navigation (as shown in figure 6, is placed on the left of the interface, which provides information and user-control to navigate)
  3. Pull-Down/ Slider Lists for the user to select and sort from the data
  4. Maps – One map to display the point data and the other to display cluster groups
  5. Serial Chart (List from the data)- To compare the selected data by the municipality
  6. Map Legend, and
  7. Embedded Content – A few images and videos to orient the context of the dashboard

The user is given a choice to select the data by:

Fig.6: User interface for the dashboard offering selection in dropdown and slider bar.

Thus a user of the dashboard can select or make choices using one or a combination of the following to display the results in on the right panes (Map, data-chart and cluster density map):

  1. Municipality: By each or all Municipalities within York Region
  2. Business Type: By each type or multiple selections
  3. Business Establishment Year Time-Range using the slider (the Year 1806 through 2018)

For the end-user of this dashboard, results are also provided based on business locations identified after geocoding the addresses across the York Region, comparative and quantifiable by each of the nine municipalities shown in Figure 7.

Fig.7: Data-Chart displayed once the dashboard user makes a selection.

By plotting the point locations on a map, and simultaneously showing the clusters within the selected range (Region/ by Municipality / by Business Type / Year of Establishment selections), Figure 8.

Fig.8: Point data map and cluster map indicate the exact geolocation as well as the cluster for the selection made by the user across the York Region at different scales.

Results:

Overall, the dashboard provides an effective geovisualization with a spatial context and location detail of the York Region’s 2018 businesses. The business type index with an option to select one/ multiple at a time and the timeline slider bar offers an end-user of the dashboard to drill down to the information they seek to obtain from this dashboard. The dashboard design offers a dark theme interface maintaining a visual hierarchy of the different map elements such as the map title, legend, colour scheme, colour combinations ensuring contrast and balance, font face selection and size, background and map contrast, choice of hues, saturation, emphasis etc. The maps also offer the end-user to change the background map base layers to see the data in the context of their choice. As shown in figure 9 of location data and quantifiable data at different scales, the dashboard interface offers visuals to display the 30,000+ businesses across the York Region.

This image has an empty alt attribute; its file name is Capture-1-1024x496.jpg

Fig.9: Geovisualization Dashboard to display the York Region 2018 Business Directory across the Nine Municipalities of the York Region.

The weblink to access the ArcGIS Online Dashboard where it is hosted is: https://ryerson.maps.arcgis.com/apps/opsdashboard/index.html#/82473f5563f8443ca52048c040f84ac1

(Please note an ArcGIS Online account is required)

Limitation:

The 2018 business data across York Region contains over 38,000 data points, and the index/ legend of the business types may look cluttered while a selection is made as well. The fixed left navigation panel width is definitely a technical limitation because the pull-down display cannot be made wider. However, the legend screen could be maximized to read all the business categories clearly. There may be errors, incomplete or missing data in the compilation of business addresses. This dashboard can be updated quickly but requires a little effort, whenever there is an update of the York Region business directory’s new release in the coming years.

A Century of Airplane Crashes

Laine Gambeta
Geovisualization Project, @RyersonGeo, Fall 2019

Tableau is an exceptionally useful tool in visualizing data effectively.  It allows many variations of charts in which the software suggests the best type based on data content.  The following project uses a data-set obtained from the National Transportation and Safety Board identifying locations and details of plane crashes between 1908-2009. The following screenshot is a final product and a run through of how it was made.

Map Feature:

To create the map identifying accident location, a longitude and latitude is required.  Once inputted into the Columns and Rows, Tableau automatically recognizes the location data and creates a map. 

The Pages function is populated with the date of occurrence and filtered by month in order to create a time animation based on a monthly scale. When the Pages function is populated with a date the software automatically recognizes a time series animation and creates a time slide.

The size of the map icon indicates the total number of fatalities at a specific location and time.  To create this effect, the fatalities measure is inputted into the Size function.  This same measure is inserted into the label function to show the total number of occurrences with each icon appearance.

When you scroll over the icons on the map the details of each occurrence appear.  To create this tool, the measures you want to appear are inserted into the Details function.  In this function, Date, Sum Aboard, Sum Fatalities, Sum Survivors, and Summary of accident appears when you scroll over the icon on the map.

Vertical Bar Chart Feature:

To create the vertical bar chart you must insert the date on the Y axis (columns), and the X axis (rows) with people aboard and fatalities.

Next, we must create a calculation to pull the number of survivors by subtracting the two measures.  To do so, right click on a column title cell and click create calculated field.  Within this calculation you select the two columns

you want to subtract and it will populate the fields. We will use this to identify the number of survivors.

The next step is creating a dual- axis to show both values on the same chart.  Right click one of the measures in the rows field and click dual-axis.  This will combine the measures onto the same chart and overlap each other.

Following this we need to filter the data to move along the animation by month.  It tallies the monthly numbers and adds it to the chart. In order to combine the monthly tallies to show on an annual bar chart, the following filters are used.  First filter by year which tallies the monthly counts into a single column on the bar chart.  The Page’s filter identifies the time period increments used in the time slider animation, this value must be consistent across all charts in order to sync.  In this case, we are looking at statistics on a monthly basis.

To split the colours between green and red to identify survivors and fatalities, the Measure Names (which is created automatically by Tableau) is inserted into the colour function.  This will identify each variable as a different colour.

When you bring your mouse over top the bar chart it selects and identifies the statistics related to the specific year.  To create this feature, the measures must be added to the tooltip function and formatted as you please.

Horizontal Bar Chart Feature:

The second bar chart is similar to the previous one.  The sum of fatalities is put in Columns and the Date is put in Rows to switch the axis to have the date on the Y axis.  The Pages function uses the same time frame as other charts calculating monthly and adding the total to the bar chart as the time progresses.

Total Count Features:

To create the chart you must insert the date on the Y axis (columns), and the X axis (rows) with people aboard and fatalities.

Adding in running counts is a very simple calculation feature and is built into Tableau.  You build the table by putting the measure into the text function, this enable’s the value to show as text and not a chart.  You will notice below that the Pages function must be populated with a date measure on a monthly basis to be consistent with the other charts.   

In order to create the running total values, a calculation must be added to the measure.  Clicking the SUM measure opens the options and allows us to select Edit Table Calculation.  This opens a menu where you can select Running Total, Sum on a monthly basis.  We apply this to 3 separate counters to total occurrences, fatalities, and survivors.

Pie Chart Feature:

Creating a pie chart requires the following measures to be used.  Under the marks drop down you must select pie chart.  This automatically creates a function for angular measure values.  The fatality and survivor measures are used and filtered monthly.  The Measure Values which is automatically created by Tableau identifies the values of these measures and is inputted into the Angle function to calculate the pie chart.  Again, the Measures Names are inputted into the colour function to separate the values by fatalities and survivors. The Pages function is populated with date of occurrence by month to sync with the other charts.

Lastly, a dashboard is created which allows the placement of the features across a single page.  They can be arranged to be aesthetically pleasing and informative.  Formatting can be done in the dashboard page to manipulate the colors and fonts.

Limitations:

Tableau does not allow you to select your map projection. Tableau Online has a public server to publish dashboards to, however it does not support timeline animation. Therefore, the following link to my project is limited to selecting the date manually to observe the statistics.

https://prod-useast-a.online.tableau.com/t/lainegambeta/views/ACenturyofAirplaneCrashes/Dashboard2?:origin=card_share_link&:embed=n