Urban Development of San Francisco

By Hannah Burdett

SA8905 Geovisualization Project, Ryerson University

The Development of San Francisco

San Francisco is located in the center of Northern California. It started as a base for the gold rush of 1849, the city quickly became one of the most populated cities in the United States. Shortly thereafter, San Francisco was devastated by the 1906 earthquake. Development peaked in the 1900’s as San Francisco rebuilt areas demolished by the earthquake and fires to compensate the growing population. During the 1930’s the San Francisco-Oakland Bay Bridge and the Golden Gate Bridge were opened. Additionally, during World War II, San Francisco was a major mainland supply point and port of embarkation for the war in the Pacific. Both factors led to another peak in construction. After World War II, many American military personnel who had fallen in love with the city while leaving for or returning from the Pacific settled in the city. This led to promoting the development of the Sunset District, Visitacion Valley, and the total build-out of San Francisco. Starting in the latter half of the 1960’s, San Francisco became most recognized for the hippie movement. Currently, San Francisco has become known for finance and technology industries. There is a high demand for housing, driven by its close proximity to Silicon Valley, and a low supply of available housing has led to the city being one of America’s most expensive places to live.

Data

The data used for the time series animation was imported from data.gov. Data.gov is a repository for the US Governments open source data. The imported data included a Land use Shapefile for San Francisco. The shapefile included information such as land use, shape area, street address, street number, etc. The land use shapefile also included the year the building was built. The building years range from 1848 to 2016 displaying 153 years of urbanization. The buildings were represented as polygons throughout San Francisco. Additionally, a grey scale base map from ArcGIS Pro was displayed to create a more cohesive map design.

 

 

Time Series Animation

To develop the reconstruction of San Francisco throughout the years, both QGIS and ArcGIS Pro were utilized. Both platforms were used so to provide a comparison between time series animation tools from an open source application and a non-open source application.

QGIS is an open source geographic information systems application that provides data visualization, editing, and analysis through functions and plugins. To create the time series animation the Time Manager plugin was utilized. The Time Manager plugin animates vector features based on a time attribute. For this study the time attribute was the years built.

ArcGIS Pro is the latest professional desktop GIS from Esri. ArcGIS Pro enables users to view, explore, analyze, edit and share maps and data. Unlike QGIS, no additional plugins are required to create the animated time series.

QGIS Methodology

To generate the time series in QGIS, the land use shapefile was downloaded and opened in QGIS. The attribute table from the land use shapefile was then exported and opened in Excel so that the yrbuilt column could be reformatted to meet QGIS Time Manager requirements. The yrbuilt column had the data presented as YYYY format for building dates. QGIS Time Manager requires timestamps to be in YYYY-MM-DD. To correct the format, -01-01 was added to the end of each building year. The modified values were then saved into a new column called yrbuilt1. The Excel sheet was then imported into QGIS and joined to the land use shapefile.

In QGIS, each of the buildings was presented as polygons. The shapefile symbology was changed from single symbology to quantified symbology. In other words, the symbology for each of the polygons was broken down to seven classes defined by years. Each class was then distinguished by color, so that one may differentiate the oldest building from the newest buildings. Furthermore, a grey scale basemap was added to create a more cohesive map.

Furthermore, in the Time Manager settings, “Add Layer” was selected. The land use shapefile was chosen as the Layer of interest. The start time was set to the yrbuilt1 attribute, whereas the end time was set to “No end time – accumulate features”. This allows newer buildings to be added without older buildings being removed from the map. For the animation, each time frame will be shown for 100 milliseconds. The Time Manager plugin was then turned on so that the time series may run.

 

In order to export the time series animation, Time Manager offers an “Export Video” option. However, this exports the animation as an image series, not as an actual video. To correct this, the image series was uploaded to Mapbox where additional Mapbox styles were used to render the map. It was then exported as a Gif from Mapbox.

ArcGIS Pro Methodology

In ArcGIS Pro, the land use shapefile was imported. The symbology for each of the polygons was then broken down to seven classes defined by years. The same colours utilized in QGIS were applied to the classes in ArcGIS Pro to differentiate between the building years. Within the layer’s properties, the Layers Time was selected as “each feature has a single time field”. Furthermore, the start and end times were set to the newest and oldest building years. The number of steps were assigned a value of sixteen. In View, the animation was added, and the Time Slider Steps were imported. The time frames were set to match the QGIS animation so that both time series animations would run at the same speed. The time series animation was then exported as a Gif.

Final Animated Map

Finally, to create a cohesive animated map the exported Gif’s were complied together in PowerPoint. Additional map features, such as a legend, were designed within PowerPoint. A bar graph was added along the bottom of the map to show years of peak building construction. The final time series map was then exported as a .mp4 and upload to YouTube.