The 100 largest wildfires in the province of Quebec from 1976 to 2019.

Author: Samuel Emard

Source: Forest fires – Open Government Portal (

Project link: Top 100 Fires in the Province of Quebec (1976-2019) (

Web Experience Direct link:

Project background

The idea for this project originated from a curiosity about the numerous environmental catastrophes that the populace is often unaware of. Especially wildfires. In the last few years, every summer’s news cycle is dominated with terrible reportages about wild fires rampaging in California, British Columbia or Alberta, and rightly so, but it is often only the largest that get mentioned on TV.

Myself being from the province of Quebec, I became curious about the wildfires that happen in my home province because I haven’t heard of them quite as often as the ones in the US or the Canadian West. Fortunately, a dataset compiling data on the wildfires in the province was available on the Federal Government open data website. However, since 1976, which I assume is the year the government started compiling data on the phenomena, 60 799 wildfires happened. Since this project focuses specifically on the online aspect of things, this amount of polygons would either be impossible to draw completely or it would take too much time to draw each of the 60 799 polygons. I juggled with multiples possible solutions to remediate the issue, such as using a smaller temporal scale, but it all ultimately depended on the platform I would choose to portray the data on. Speaking of which, here’s a small description of ArcGIS Web Experience Designer.


Finding a platform to portray the data depended on my familiarity with it. Unfortunately, online GIS wasn’t my forte and I only knew of ArcGIS Online and its Story Maps. However, I felt that Story Maps were not novel enough. That’s when I happened upon the Dashboard and the Web Experience creators available on ArcGIS Online. After fiddling with both, I decided to settle on the Web Experience to portray the data.

The ArcGIS Online Web Experience is, according to their own website, a tool that allows the “creation of unique web experiences using flexible layouts, content, and widgets that interact with 2D and 3D data”. It creates a mobile-friendly output built from scratch without coding. It creates interactive maps that are formatted to be viewable and interactable on desktop, tablet and phones. It has 26 widgets available to put on the map, going from a legend to a 3D data viewer tool. For this project, I used a few simple widgets that would enhance the experience for users, which are going to be described further down.

Data and Methods

The data and methodology for this project are pretty straightforward and most of the work went into the web experience designer (to assure the optimal experience on desktop and mobile alike). The data for this project came from a vast dataset on forest fires available on the federal government’s open data website. On their page (link provided above), it is mentioned that the data was made available by multiple municipalities and government (see figure 2). However, they do also mention that the creator of the dataset is the “Secteur des Forêts-Direction des inventaires forestiers” and “Direction de la protection des forêts”, which mean “The Forest Sector-Forestry inventory direction” and “Direction of the protection of forests” respectively.

Figure 2: Warning on data source on Open Data Website.

Anyway, the dataset contains data on every forest fires that occurred in the province of Quebec between 1976 and 2019. That includes geometric data on each of the polygons, the year the fire started, the way it started, the year it was “extinguished” and the superficies of the fire in hectare. Sadly, some of the variables are abbreviated and their meaning wasn’t mentioned on the website and couldn’t be used in this project, but I didn’t need them for what I intended to accomplish.

At first, I wanted to map all polygons, all 60 799, but I decided otherwise due to the sheer size of the dataset. Then, I filtered the data by the year the fires started and extracted all the data from 2013 to 2019. I hoped to display all the fires of the last few years, but even that was too big. There were a bit less than 10 000 polygons and ArcGIS Online was already giving a warning about it not being able to draw the entire thing. So, I was looking for a solution to remediate the problem of having too many polygons to draw and I figured that showing the 100 largest fires since 1976 would be indeed a very interesting, and informative, way to show what I wanted.

To that end, I filtered by the area burnt by the fire, which is in hectare, and extracted the top 100 fires. The data extraction part was done offline, on ArcGIS Pro, because it was simply faster and easier to manipulate the dataset. I then uploaded the 100 largest fires to the ArcGIS Online Platform to make a map because the Web Experience Designer couldn’t create its own map, I had to make one beforehand and then upload it to the Web Experience Designer.

Once the map was done, I could then start working toward the creation of the web experience. Figure 3 shows the user interface of the Web Experience Designer.

Figure 3: Web Experience Desktop U.I.

The Web Experience Designer is fairly straightforward to use and is designed to be usable by people without experience in coding. All of its widgets and tools are available on the left side of the screen and usable with a simple drag and drop. Every widgets/tools are then adjustable in their settings that appears to the right side of the screen. For this project, I used the following widgets/tools: Image (which is, in fact, the legend), table, share and the button widget. Here’s a small description of each and how I used them;

Image/Legend: Sadly, legends on ArcGIS Online are very hard to modify without modifying the entire dataset and its variables and the Web Experience Designer could only use the legends from ArcGIS Online. In my case, the original legend only said “SUPERFICIE” as the field for the superficies of the fires. That wasn’t exactly what I wanted and the workaround that I used was to simply create the legend I wanted in ArcGIS Pro and then screenshot it and upload it as an image to the web experience. The result (Figure 4) shows the end result.

Figure 4: Example of the W.E.D. Legend on the image widgets.

Table: The table widget is simple. It allows the users to see and interact with the data table of the dataset. It allows them to see almost everything there is to see in the data. For simplicity’s sake, I hid some of the more technical columns, especially those populated with the geometry data. The table only shows the fire ID, the size and the year it started. The goal was to make the experience most straightforward. The table also allows selecting specific fires without selecting them on the map (even though you also can select directly from the map).

Share: The share widget is a simple share button that any good online experience should have nowadays. I allow the users to share the link to the web experience on a multitude of social media.

Button: This widget was put on the web experience to allows the users to directly go to the source of the dataset. The link to the open data portal was already available in the web experience’s description, but this button makes it easier to use on mobile devices since you only need to click it and the link to the dataset’s source is made available.

So after making sure every widget works, the next step was to make sure that the web experience is good for each device (computers, tablets and phones). That means changing the formatting of the web experience to fit the resolution and screen sizes of each device.

Finally, the last step of the creation process was to make sure that the map was correctly interactable. That means that I tested my own web experience and verified that the polygons were selectable and that the information for the polygon appeared on screen. I made sure the data table was correct (though it seems to bug a bit as it in beta stage still) and that the polygons were drawn correctly.

Then there it was. The Web Experience was made. Only needed to write descriptions and other small paragraphs on the info page of the web experience and then publish it. I thoroughly enjoyed using the Web Experience Designer to create an interactive map, but, as much I as liked it, there were many limitations that I had to overcome.


The limitations of this project were many, but minor. The very first one I encountered was the lack of a clear description of the variables and the abbreviations used in the data. Maybe I haven’t seen it on their page or missed it in the metadata, but I couldn’t find an explanation for some of the abbreviations they use in the data to describe the origin point (human-caused or naturally caused forest fires) and in some other variables. Knowing those could’ve led me to display the data in a much different way.

Another limit I encountered were the online capabilities of ArcGIS Online, such as the inability to draw large amounts of data, and the lack of modification to legend’s title. I could easily find other solutions by doing it offline in ArcGIS Pro, but not everyone has that ability, so I’d count that as a limitation encountered in this project.

The Web Experience Designer, while quite advanced and easy to use, was a bit of a chore to understand its intricacies and has a steep learning curve for the more in-depth features of the platform. By that, I mean that this project only uses a fraction of the options available in the Web Experience Designer. There are more widgets available, but every object part of the experience can be given actions to perform set by specific triggers. For example, If the user clicks on a polygon for a fire, it is possible to set the data table of this specific polygon to appear (in a multitude of ways) on the map. There were also many other actions and triggers to use, but the platform doesn’t make it easy for the new users to utilize the full potential of the designer.

Future Work

In a perfect world where unlimited resources were available for this project, I would make it so the web experience would display the 100 largest forest fires of the province of Quebec for every year since the start (1976).

In other words, I would set-up a year button for each of the years in the dataset. Then, the users would simply click on one (i.e. 2012) and the web experience would display the 100 largest forest fires of that chosen year. That way, the users could see a much larger dataset that would be much more informative. The top 100 forest fires show also focuses on the southern half of the province since most of the population (about 95%) lives there. So, with unlimited resources, the dataset would also include the forest fires that occurred in the northern half of the province.

In a perfect world, the dataset could include the entirety of Canada so that a top 100 forest fires could be done for each province and for every year since 1976. That would be a massive dataset however.

Utility of the project

The goal of this project was to inform the population on the locations and sizes of the wildfires in the province of Quebec. Specifically, it aims to inform fellow Quebecers of the largest forest fires that occurred in their own province. This dataset can be updated every year, if needed, to display a more up-to-date version of the wildfires. Its interactive aspects allow the users to see the information of every fire that occurred (ID, year, size, etc..). It can also be used for forestry companies and environmental agencies that wish to visualize the largest forest fires.