Explore Flood Resilience in Toronto: An Interactive Mapping Tool

Author: Shantelle Miller
Geovisualization Project Assignment @TMUGeography, SA8905, Fall 2024

Introduction: Why Flood Resilience Matters

Urban flooding is a growing concern, especially in cities like Toronto, where increasing urbanization has disrupted the natural water cycle. Greenspaces, impervious surfaces, and stormwater infrastructure all play vital roles in reducing flood risks, but understanding how these factors interact can be challenging.

To address this, I created an interactive mapping tool using ArcGIS Experience Builder that visualizes flood resilience in Toronto. By combining multiple datasets, including Topographic Wetness Index (TWI), greenspaces, and stormwater infrastructure, this map highlights areas prone to flooding and identifies zones where natural mitigation occurs.

One of the tool’s standout features is the TWI-Greenspace Overlay, which pinpoints “Natural Absorption Zones.” These are areas where greenspaces overlap with high TWI values, demonstrating how natural environments help absorb runoff and reduce flooding.

Why Experience Builder?

I chose ArcGIS Experience Builder for this project because it offers a user-friendly, highly customizable platform for creating dynamic, interactive web maps. Unlike static maps, Experience Builder allows users to explore data in real-time with widgets like toggleable layers, dynamic legends, and interactive pop-ups.

  • Multi-Dataset Integration: It supports the combination of multiple datasets like TWI, greenspaces, and stormwater infrastructure.
  • Widgets and Tools: Users can filter data, view attributes, and toggle layers seamlessly.
  • No Code Required: Although customizable, the platform doesn’t require coding, making it accessible for users of all technical backgrounds.

The Importance of Data Normalization and Standardization

Before diving into the data, it’s essential to understand the critical role that data normalization and standardization played in this project:

  • Ensuring Comparability: Different datasets often come in various formats and scales. Standardizing these allows for meaningful comparisons across layers, such as correlating TWI values with greenspace coverage.
  • Improving Accuracy: Normalization adjusts values measured on different scales to a common scale, reducing potential biases and errors in data interpretation.
  • Facilitating Integration: Harmonized data enables seamless integration within the mapping tool, enhancing user experience and interaction.

Data: The Foundation of the Project

The project uses data from the Toronto Open Data Portal and Ontario Data Catalogue, processed in ArcGIS Pro, and published to ArcGIS Online.

Layers

Topographic Wetness Index (TWI):

  • Derived from DEM
  • TWI identifies areas prone to water accumulation.
  • It was categorized into four levels (low, medium, high, and very high flood risk), with only the highest-risk areas displayed for focus.

Greenspaces:

  • Includes parks, forests, and other natural areas that act as natural buffers against flooding.

Impervious Surfaces and Pervious Surfaces:

  • Pervious Surfaces: Represent natural areas like soil, grass, and forests that allow water to infiltrate.
  • Impervious Surfaces: Represent roads, buildings, and other hard surfaces that contribute to runoff.

Stormwater Infrastructure:

  • Displays critical infrastructure like catch basins and sewer drainage points, which manage water flow.

TWI-Greenspace Overlay:

  • Combines high-risk TWI zones with greenspaces to identify “Natural Absorption Zones”, where natural mitigation occurs.

Creating the Map: From Data to Visualization

Step 1: Data Preparation in ArcGIS Pro

  1. Imported raw data and clipped layers to Toronto’s boundaries.
  2. Processed TWI using terrain analysis and classified it into intuitive flood risk levels.
  3. Combined pervious and impervious surface data into a single dataset for easy comparison.
  4. Created the TWI-Greenspace Overlay, merging greenspaces and TWI data to show natural flood mitigation zones.
  5. Normalized and standardized all layers.

Step 2: Publishing to ArcGIS Online

  1. Uploaded processed layers as hosted feature layers with customized symbology.
  2. Configured pop-ups to include detailed attributes, such as TWI levels, land cover types, and drainage capacities as well as google map direct link for each point feature.

Step 3: Building the Experience in ArcGIS Experience Builder

  1. Imported the web map into Experience Builder to design the user interface.
  2. Added widgets like the Map, Interactive Layer List, Filters, Legend, Search etc., for user interaction.
  3. Customized layouts and legends to emphasize the relationship between TWI, greenspaces, and surface types.

Interactive Features

The map offers several interactive features to make flood resilience data accessible:

Layer List:

  • Users can toggle between TWI, pervious surfaces, impervious surfaces, greenspaces, and infrastructure layers.

Dynamic Legend:

  • Updates automatically to reflect visible layers, helping users interpret the map.

Pop-Ups:

  • Provide detailed information for each feature, such as:
  • TWI levels and their implications for flood risk.
  • Land cover types, distinguishing between pervious and impervious surfaces.
  • Greenspace types and their flood mitigation potential.

TWI-Greenspace Overlay Layer:

  • Highlights areas where greenspaces naturally mitigate flooding, called “Natural Absorption Zones.”

Filters:

Enable users to focus on specific attributes, such as high-risk TWI areas or zones dominated by impervious surfaces.

Applications and Insights

  • The interactive map provides actionable insights for multiple audiences:

Urban Planners:

  • Identify areas lacking greenspace or dominated by impervious surfaces where flooding risks are highest.
  • Plan infrastructure improvements to mitigate runoff, such as adding bioswales or permeable pavement.

Planners:

  • Assess development sites to ensure they align with flood mitigation goals and avoid high-risk areas.

Homeowners:

  • Evaluate flood risks and identify natural mitigation features in their neighborhoods.
  • For example, the map can reveal neighborhoods with high TWI and limited greenspace, showing where additional stormwater infrastructure might be necessary.

Limitations and Future Work

Limitations

  1. Incomplete Data: Some areas lack detailed data on stormwater infrastructure or land cover, leading to gaps in analysis.
  2. Dynamic Changes: The static nature of the datasets means the map doesn’t reflect recent urban development or climate events.

Future Work

  1. Add real-time data on precipitation and runoff to make the tool more dynamic.
  2. Expand the analysis to include socioeconomic factors, highlighting vulnerable populations.
  3. Enhance accessibility features to ensure compliance with AODA standards for users with disabilities.

Conclusion: A Tool for Flood Resilience

Flood resilience is a complex issue requiring a nuanced understanding of natural and built environments. This interactive mapping tool simplifies these relationships by visualizing critical datasets like TWI, greenspaces, and pervious versus impervious surfaces.

By highlighting areas of natural flood mitigation and zones at risk, the map provides actionable insights for planners, developers, and homeowners. The TWI-Greenspace Overlay layer, in particular, underscores the importance of greenspaces in managing stormwater and reducing flood risks in Toronto.

I hope this project inspires further exploration of flood resilience strategies and serves as a resource for building a more sustainable and resilient city.

Thank you for reading, and feel free to explore the map experience using the link below!

Project Link: Explore Flood Resilience in Toronto
Data Source: Toronto Open Data Portal, Ontario Open Data Catalogue
Built Using: ArcGIS Pro, ArcGIS Online, and ArcGIS Experience Builder

Mapping Toronto Flood Events by using Esri Operations Dashboard

Dashboard Web application: Toronto Flood Events 2013-2017

By: Mohamad Fawaz Al-Hajjar

Geovisualization Project, @RyersonGeo, SA8905, Fall 2019

Introduction:

Toronto has been affected by many flood events, but the biggest modern event happened in July, 8th, 2013, when a thunderstorm passed over the city and broke the record when Toronto received huge amount of rain reached to 126mm, that caused major transit delays, power outages, flight cancellations and many areas flooded throughout the city; in order to visualize such phenomena and monitor the number of events per Toronto ward, web application dashboard has been implemented to inactively visualize the historical data, which also could be used to map the real time data as an optimal way to utilize the web dashboards.

Geovisualization Methodology

The technology that has been used to interactively visualize flood events data in Toronto is Esri Operations Dashboard, which was released in December, 2017 and has become an effective tool for the Esri users, which allow them to publish their Web Maps via dashboard by applying simple configuration without writing a single line of code. The project has followed the below methodology.

  1. Data Review and Manipulation

After obtaining the open data from two main sources, TRCA Open Data Portal and Toronto Open Data Portal, with other different data sources which have been reviewed and visualized in ArcMap application 10.7.1 release. Some of the data had to be cleansed, such as Flood Plain Mapping Index and property boundary shapefiles, other data were derived from polygon shapefile “flood-reporting-wgs84” for Toronto wards, where the total number of flood events stored by year from 2013-2017. A derived data-set produced as a point shapefile events points by using generating random point tool from polygon in ArcGIS ArcToolbox.

In addition, another data set have been created, the Property boundaries which have been intersected and clipped with the flood plain feature to generate the flooded properties per ward, which is also spatially joined with the wards to inherit its attributes. that could be configured in the dashboard to show the number of flooded properties per ward.

List of Data-Set Used:

Stormevents (derived from Flood reporting polygon) (Toronto open data)

Property per ward (derived from Property boundary and Flood reporting polygons) (Toronto open data)

Flood Events renamed to (Flood reporting polygons) (Toronto open data)

Toronto Shelters (Toronto open data)

GTA Watercourses (TRCA open data)

GTA Flood Plain (TRCA open data)

GTA Waterbodies (TRCA open data)

2. Data Publishing:

After getting the data ready, map produced in ArcMap where data symbolized then published to web map In ArcGIS Online, which will be the core map for the operation dashboard.

3. Creating the Dashboard:

In order to generate an Esri operation dashboard you need to be a member of ArcGIS Online organization, then have a published Web Map or hosted Feature Layer as an input to the dashboard.

Creating the dashboard went through many steps as described below:

  • Login to your ArcGIS Online organization using your username and password.
  • From the main interface click the App Launcher button as below snapshot
Application Launcher button

or you could also click on your Web Map application under Content in ArcGIS Online then click on Create Web App dropdown list to choose Using Operations Dashboard

Create Web App
  • Create Web App box will be opened to fill Title, Tag and Summary
  • The map will be opened into the dashboard, where you will start to add the widgets you need to your application from the drop-down menu as below snapshot.
  • Widgets will be added and configured as needed.

Toronto Flood Events Dashboard has included the most important widgets (Map, Header, Serial Chart, Pie Chart, Indicator, and List)

Once widget selected, the configuration box will be opened which is easy to be configured then will be dragged to be docked as needed

After adding multiple widgets, an important setting needs to be configured in the Map widget to set what is called an Action Framework, that happens when we change the map extent of the geographic area, then the other dashboard elements such as (Serial Chart, Pie Chart, Indicator, and List) will interactively be changed.

  • From the Map Widget go to Configure button, then select Map Actions tab, hit Add Action drop-down list then filter to choose other dashboard elements from the configuration box. the option When Map Extent Changes appears to let you filter and make action to other elements as well. Indeed, this is the most powerful tool in the dashboard.
  • Another configuration could be made in the Header element where you can insert a drop-down menu to map a certain feature by date, type, area or time, which is easily be configured in the dashboard web application.
  • After configuring all required elements, hit save then you can share or publish your dashboard web application with other users out of your organization.
To access the Dashboard click on the link below
Toronto Flood Events 2013-2017

Geovisualization Project Limitations:

The project was encountered two main limitations:

The data limitation:

Data limitations were taken most of the time to be defined, then after defining the available open data, many data cleansing and manipulation has been taking in terms of changing spatial reference to fit with online maps or changing the data format, which are still limited with the variables used, the derived events point generated randomly from the polygon shapefile “flood-reporting-wgs84” for Toronto wards to show the number of events per Toronto ward, which are not available as points from the main source; even though, the points still not accurate in location, but it give an idea about the number of event per ward boundary in different years.

Technology Accessibility:

It is clearly represented when we use Esri operations dashboard, which is only available to the member of ArcGIS Online organization and whom how have that access, still be able to get the benefits out of it by hitting the published location.