Time-Lapse of City of Toronto Precipitation and Beach E.Coli Count- July 2018

Kezia Weed- SA8905 Geovis Project, Fall 2021

Introduction

Toronto’s beaches are an incredible feature of the city, popular throughout warm months for water activities of, among other things, swimming, paddle boarding, and boating. While taking a plunge into Lake Ontario is a great way for residents to cool off, it is always important to be aware of the current water quality conditions. During the summer, the City of Toronto tests beaches for Escherichia coli (i.e., E.Coli) counts daily as a public health measure, posting results available on site and online. What many residents are unaware of, is that E.coli is a bacteria that lives naturally in the guts of warm blooded animals; only high concentrations of E.coli at beaches pose a danger of infections for swimmers. In Toronto, beaches are posted as unsafe to swim when E.Coli counts exceed 100 fecal coliforms per 100ml.

Water quality can be impacted by numerous factors including legacy contaminants (i.e., lead), industrial activity (i.e., direct effluent discharge), and by urban stormwater and sewage water. In this visualization, the purpose is to examine the impact of precipitation on fecal coliform counts. This visualization includes seven weather stations and 10 downstream beaches across the city, as to capture the effect of rainfall on water quality. As a general rule, cities believe residents should not swim within 24-48 hours of a rain storm as rain can mobilize urban contaminants into the surface flow, streams, and eventually beaches. This is especially important during extreme precipitation events in Toronto, when there is the risk of combined sewer overflows (CSOs); CSOs occur when the volume of water discharged exceeds wastewater treatment plant capacity, and must be directed into Lake Ontario untreated.

On this premise, this visualization displays both precipitation and beach water quality over the span of a month. This is to examine, if at all, there are clear impacts between precipitation and the observed fecal coliforms at beach sites.

Data

The base layers for this visualization are i) ‘Toronto Watercourses’ polyline shapefile and ‘Toronto Watershed’ polygon shapefile, downloaded from the TRCA; a ii) ‘Lake Ontario’ shapefile, downloaded from the United States Geological Survey (USGS) Open Data portal; and ii) a ‘City of Toronto boundary’ shapefile downloaded from City of Toronto Open Data.

Seven (7) weather stations with daily precipitation data were identified for the duration of July 2018. Five of the weather stations’ datasets were retrieved from Environment Canada’s (EC) ‘Historic Weather’ data catalogue, and two additional weather stations’ datasets were accessed from the City of Toronto Open Data portal, from the ‘2018 Precipitation Data’ file. The daily total fecal coliform tests (i.e., E.Coli concentration) were downloaded from the City of Toronto’s ‘Swimming Conditions History’ webpage.

All of the weather and total coliform datasets were placed into individual comma separated value (.csv) files, with a column for date, latitude, longitude and an entry for either precipitation or E.Coli concentrations.

Sample csv file in appropriate format

Technology

All spatial datasets were inputted and visualized within the open-source geographic information system (GIS), QGIS 3.10. To achieve a time-series visualization, this study used the QGIS plugin, ‘TimeManager’ (developed by Anita Graser). TimeManager allows for the creation of timelapse maps with temporally stamped data.

TimeManager Plug-in in QGIS

Process

To create the initial map, add the basemap shapefiles of i) ‘Toronto Watercourses’, ii) ‘Toronto Watersheds’, iii) ‘City of Toronto boundary’, and iv) ‘Lake Ontario’.

Import the .csv files for each individual Toronto weather station using the ‘Add Delimited Text Layer’ option in the ‘Add Layer’ menu in QGIS 3.10. Within the import manager, the ‘X’ and ‘Y’ geometry values have to be selected for defining point geometry; in the ‘Geometry Definition’ section of the import manager, assign the ‘X’ value to the weather stations’ longitude and the ‘Y’ value to latitude. As the latitude and longitude coordinates were in decimals, minutes second, the geometry type was specified as ‘DMS’ in the coordinates box. If the data file has coordinates in decimal format, leave the coordinates box unchecked. Finally, select ‘Add’ and a point for the weather station which will be placed on the map. Repeat this process for each of the Toronto weather stations and Toronto beaches .csv files.

The next step is to create a spatial buffer for the precipitation levels that surround each weather station. In the tools pane, select ‘Vector’, then the geoprocessing toolbox (i.e., ‘Geoprocessing’), then select the buffer operation (i.e., ‘Buffer’). Using the weather station point as the start for the buffer, then define the width of the buffer. For this map the value selected was 5km. To limit overlap of stations. Repeat this process for each of the Toronto weather station points.

Buffer options screen

Once Toronto weather stations are buffered, proceed to the ‘properties’ pane for the new point and select the variable ‘precipitation’, then specify layer symbology under ‘graduated symbols’. Within ‘graduated symbols’, set the symbol ranges and select the colour ramp. In this example, buffers were each made to be 50% opacity.

To create the beach points, proceed to the layer’s ‘properties’ pane, and select ‘symbology’. Selecting ‘E.Coli’ as the display variable, specify layer symbology using ‘graduated symbols’, and then select a corresponding symbol. For the purpose of this map, four categories of fecal coliform concentration were used: 0-50 (Green), 51-100 (Yellow), 101- 200 (Red), and 201-999 (Starburst). Graduating visualization breaks in four categories was chosen to be able to see the changes, they do not directly correspond to beach advisory levels.

Map with buffered weather station points and beach data points

Once weather station points and buffers, and beach points were set up, open up the ‘Time Manager’ plugin from the workbench in QGIS. Add in each vector layer, ensuring that the date format of the points and buffers is in ‘yyyy-mm-dd’, otherwise it will not work. For the purpose of this visualization, days were selected as the ‘time format’

TimeManager control panel

Finally, select export video. When exporting using TimeManager, it does not export as a compiled video; instead, TimeManager creates a different image for each day. While this isn’t ideal for a very large data set, it does automate map generation in a consistent layout form. Moreover, it is not possible to add map elements in the QGIS 3.10 ‘TimeManager’ plugin, therefore this must all be done as post-QGIS processing. In this case, Microsoft PowerPoint (v.2019) was selected, with the additional map elements (scale bar, legend, title, and north arrow) added at this point. A video was then compiled in Microsoft PowerPoint (v.2019) and uploaded to YouTube.

Results

Below is the final result, published as a video on YouTube.

Toronto Maple Leafs Game-Day Guide

Author: Olivia Kariunas

Geovisualization Project Assignment @RyersonGeo, SA8905, Fall 2021

Project Link: https://arcg.is/1Xr9i52

Background

The inspiration behind creating this geovisualization project stems from my own curiosity about Toronto’s tourism industry and love of the hometown hockey team. There have been numerous instances where I found myself stressed and anxious about planning a stay within Toronto due to the overwhelming number of options for every element of my stay. I wanted to create content in an interactive manner that would reduce the scope of options in terms of accommodations, restaurants, and other attractions in a user-friendly way. With a focus on attending a Toronto Maple Leafs game, I have created an interactive map that presents readers with hotels, restaurants and other attractions that are highly reviewed, along with additional descriptions that may provide useful to those going to these places for the first time. Each of these locations are located under 1 kilometer from the Scotiabank Arena to ensure that patrons will not require extensive transportation and can walk from venue to venue. Also, the intent behind the interactive map is to increase fan engagement by helping fans find a sense of community within the selected places and ease potential stressors of planning their stay. For a Toronto Maple Leafs fan, the fan experience starts before the game even begins.

Why Story Map?

Esri’s Story Map was chosen to conduct this project because it is a free user-friendly method that allows anyone with an Esri Online account to create beautiful stories to share with the world. By creating a free platform, any individual or business can harness the benefits of content creation for their own personal pleasure or for their small business. Furthermore, the Shortlist layout was chosen to include images and descriptions about multiple locations for the Story Map to give readers visual cues of the locations being suggested. The major goal behind using this technology is to ensure that individuals in any capacity can access and utilize this platform by making it accessible and easy to understand.

Data

To obtain the data for the specific locations of the hotels, restaurants, and other attractions, I inspected various travel websites for their top 10 recommendations. From these recommendations, I selected commonalities among the sites and included other highly recommended venues to incorporate diversity among the selection. For the selected hotels, I attempted to include various category levels to accommodate different budgets of those attending the Leafs game. Additionally, all attractions chosen do require an additional purchase of tickets or admission, but vary in price point as well.

Creating Your Story Map

Start the Story Map Shortlist Builder using a free ArcGIS public account on ArcGIS Online.

Create a title for your interactive map under the “What do you want to call your Shortlist?”. Try to be as creative, but concise, as possible!

The main screen will now appear. You can now see your title on the top left, as well as a subtitle and tabs below. To the right, there is a map that you can alter as you like. To add a place, click the “Add” button within the tab frame. This will allow you to create new places that you want to further describe.

Story Map Project Main Screen

A panel will appear where you can enter the name of the chosen destination, provide a picture, include text, and specify its location. You can include multiple images per tab using the “Import” feature. Once the location has been specified using the venue’s address, a marker will appear on the map. You are able to click and drag this marker to any destination that you choose. The colour of the marker correlates to the colour of the tab. Additionally, you can include links within the description area to redirect readers to the respective venue’s website.

Completed location post with title, image, and description.

Click the “+” button on the top right hand corner of the left side panel to add more destinations. The places that you add will show as thumbnails on the left side of the screen. Click the “Organize” button underneath the tab to reorder the places. You can order these in any way that seems logical for your project. Click “Done” when satisfied.

To create multiple tabs, click the “Add Tab” button. To edit a tab, click the “Edit Tab” button. This will allow you to change the colour of the tab and its title.

The Edit, Add, and Organize Tabs can be found to the right of the other tabs and above the map.

To save your work, press the “Save” button occasionally, so all of your hard work is preserved.

There are also optional elements that you can include as well. You can change the behaviour and appearance of your Shortlist by clicking the “Settings” button. You are able to change the various functions people can utilize on the map. This includes implementing a “Location Button” and “Feature Finder” where readers can see their own location on the map and find specific locations on the map, respectively. You are also able change the colour scheme and header information by clicking on their tab options. Hit “Apply” when satisfied.

Settings options tab

To share your Shortlist click the “Save” button and then click the “Share” button. You can share publicly or just within your organization. Additionally, you can share using a url link or even embed the Story Map within a website.

Final output of content

Limitations & Future Work

The main limitation of this project was selecting what venues to include. Toronto is a lively city with an overwhelming amount of options for visitors to choose from, resulting in many places being overlooked or unaccounted for. Overall, the businesses chosen represent a standard set of places for those who are unfamiliar with the city. To include a more diverse set of offerings, an addition to the current project, or an entirely new project, can be created to include places that provide more niche products/services. Furthermore, a large portion of the venues chosen were selected from travel/tourism advisory websites where the businesses on the sites may pay a fee to be included, thus limiting the amount of exposure other businesses may have.

Overall Thoughts

Story Map was simple to understand and the platform was aesthetically pleasing. My only reservations about this program is the limited amount of stylization control in terms of the text and other design elements. I would most likely use this platform again, but may attempt to find a technology that allows for more control over the overall appearance and settings of the geovisualization.

Thank you for reading my post. Have fun creating!

Building digitization using Artificial Intelligence – an Open Source approach

By Nikita Markevich

Geovisualization Project Assignment, SA8905, Fall 2021

INTRO

With the development of automation and machine learning, a new approach in raw data acquisition has been opened for people to try. QGIS is a popular open-source GIS software that allows the creation of custom plugins for all sorts of geoprocessing. One such plugin is called Mapflow, developed by Russian-based company GEOAlert. Mapflow is an easy-to-use plugin to retrieve ground data from satellite imagery such as buildings, roads, construction zones, and forest canopies. This blog will introduce how to use Mapflow through a browser environment. To learn how to use the plugin, please refer to the Esri Story Maps tutorial through this link: https://storymaps.arcgis.com/stories/dfd88d7170c74f33a4dd5f7583cdc414

The difference between the use of Mapflow in the browser and through the plugin is that browser only allows detection from web-based satellite services such as Mapbox, or custom imagery through URL, while in the plugin, custom satellite imagery can be processed straight from the user’s device. The major advantage of the browser approach is that the process is using remote servers which is faster than the plugin process.

Mapflow website project page

USER INTERFACE

Mapflow online service uses free to try system by giving 500 free credits when opening an account. Each process requires credits based on the size of the data area that the user wishes to process. If the user runs out of credits, it is possible to top up the balance in the top right corner for the price of 100 CAD per 1000 points.

Let’s explore the project page. The project is organized in steps where the user can choose the data source, the type of AI Model that the user wishes to run, and post-processing operation for additional data gathering. AI Models that are available in the browser copy the models which are available in the QGIS plugin. AI can provide digitization for buildings, high-density housing, forests, roads, construction, and agricultural fields.

User Interface of the Data source tab in Mapflow. Mapbox API is used to display geographic data.

In the data source tab, a user can either use the embedded draw tool to choose the area for processing or upload polygon data in GEOJSON format. The draw rectangle tool is very intuitive in its use and as soon as it’s drawn, the website provides the area’s size in squared kilometers. This number is used by the website to determine how many credits are required to process the area. The larger the area, the more credits it costs to process.

DATA

The area of interest for this example would be focused on the same area as was used in the plugin tutorial in Esri Story Maps: the city of Ciego De Avilo in Cuba. The drawn rectangle over the city and closest suburbs estimated the area to be 45.31 squared kilometers. Originally the area was raised to my attention when I was doing some research project for the company I work for to explore the possibility of constructing fiber service in the Caribbean region. While searching for building and road data through open sources such as OpenStreetMap, I realized that some Caribbean countries and especially Cuba is missing geographic data that is required to create a fiber map model. After exploring several options, the plugin Mapflow proved to be most useful to generate geodata from available free commercial satellite imageries.

Selected Area of the City of Ciego De Avila chosen through draw rectangle tool in the data source page of Mapflow

PROCESS

The Chosen area is now inputted in our project. The next steps would be to choose the model and post-processing data. We will choose a buildings model to test the speed of the browser process and compare it with the plugin process. The big perk of the browser tool is the post-processing options. One such option is automatic polygon simplification, which would simplify the results of the model. In the plugin version, the results of the model outputted some building polygons in broken shapes or fuzzy polygons. That would create additional work post-processing polygons manually. The browser tool offers that option for free.

Project window of Mapflow right before the beginning of the process.

The area of interest costs 227 credits to be processed, which means that every 100 squared kilometers processed costs 500 points.

As soon as the Run processing button is pressed, the final step is to wait for the process to finish and download the processed data. The process finished in 32 minutes. That is 15 minutes faster than in the plugin process, which was 47 minutes.

After the process is finished, the user can view the results in the browser and download the file in the GEOJSON format.

Data results in the browser window

The process assigns id numbers to each shape as well as shape types, such as rectangle, grid snap, or l-shape. This information can help with further post-processing and solve any automation mistakes.

LIMITATIONS AND FUTURE WORK

The most important limitation of this tool is its cost, however, if the user decides to process an area larger than 100 square kilometers, one can create multiple accounts and use free credits each time. Secondly, the processed results sometimes output shapes that are very questionable in their nature. Some polygons merged multiple buildings into ones, others detected buildings partially, in other cases the orientations of polygons are off. This can be fixed in the manual post-processing by GIS professionals.

In the future, this tool can be potentially be used to populate the OpenStreetMap dataset with the building polygons and roads data. Open Source data is very important for many gis users, and AI automation is the perfect companion that makes the work of GIS enthusiasts much easier by streamlining the most tedious processes in geographic analysis.

Introducing YouthMappers

Author: Daniel Council

Geovis Project Assignment @RyersonGeo, SA8905, Fall 2021

Project Link: https://arcg.is/15zmWP0

Background

During my time in undergrad, I became involved with an international network of student mappers called YouthMappers. Through virtual internships and engagement with the chapter at my university, I started to become an active member of the network. For starters, one of the main goals of YouthMappers is to create open data for areas of the world that are lacking readily available spatial data. 

The concept of open data is similar to Wikipedia, it can be provided by anyone. The primary method of open data collection used is OpenStreetMap, which is an open source platform that anyone can edit and upload spatial information onto, such as roads and buildings, for example. Many companies, organizations, and websites use data found on OpenStreetMap. The popular mobile-phone game, Pokémon Go, sources its map data from OpenStreetMap. However, arguably the most beneficial aspect of open data is that it is free, readily available, and accessible to anyone.

YouthMappers Chapters around the Globe

There are currently 291 YouthMappers chapters located throughout 62 countries around the globe. My chapter was located in Muncie, Indiana, at Ball State University. I interned with YouthMappers to research how open data is being used in Belize, and I also looked into how the Belizean government views open data as opposed to official sources of information. Additionally, I worked with the YouthMappers Validation Hub, which works to validate mapping projects conducted by YouthMappers chapters.

Project Description

For my geovisualization project, I was inspired by my involvement with YouthMappers. I wanted to introduce the organization to our class using technology provided by Esri. I often work with Dashboards, web maps, and Story Maps, but I was interested in trying out one of the other apps that Esri hosts in order to learn a new tool. I came across Experience Builder in ArcGIS Online, and was interested in how it can almost be used as a tool for creating a website, one that can be viewed across any type of device.

While there is a lot of overlap in functionality between Experience Builder, Dashboards, and Story Maps, Experience Builder allows for increased customization. There is no coding necessary, however. In fact, the user interface for creating an Experience is quite user friendly once you learn the main concepts. Within Experience Builder, you can even integrate and link other Esri applications like Survey123 or Dashboards, a functionality not available elsewhere. Experience Builder can be more comprehensive than Dashboards, which is mainly used to provide information on a singular, non-scrolling screen. With Experience Builder, you can create long, scrolling pages (which I did not personally do in my project). With this being said, Experience Builder is definitely the way to go if you’re looking to make something that is more in tune with a website. 

The remainder of this blog post will serve as a tutorial for the basics of how to use Experience Builder to create a web page for your organization. The approach I took was fairly simple, as I wanted to be able to disseminate the key information with as few pages and tabs as possible, and also have everything fit on a singular screen to prevent the need for endless scrolling. I only included three tabs to display information, which are described below. YouthMappers already has their own website, so my project is more of a condensed and interactive version that can be viewed in a short amount of time, and provides a general introduction to people who may be unfamiliar with the network. 

Three Tabs used to Separate Information

About: Used to introduce the organization and give a visualization of how widespread it is. The map I used is interactive and allows for user-friendly navigation and custom pop-ups for each point on the map.

Our Work: Gives a real-life example of a project conducted by the organization, and shows the benefits and impact this project makes. Giving an example helps the viewer understand how the organization operates. A visual of the completed or in-progress project can further provide something almost tangible.

Get Involved: Provides a way to viewers to become a member or learn more about the organization if they wish. Gives a link to the more detailed organization website.

Experience Builder: The Basics

Now, for using Experience Builder itself, there are a few important concepts to learn before beginning. While the app provides a number of pre-made templates, I would recommend starting with a blank project. I tried starting with a template but personally found it too overwhelming. I enjoyed the process of learning how Experience Builder works from scratch and found it easier than trying to integrate my ideas with something that was already formatted in a specific way.

Pages: In my project, there are three pages, each being linked to the tabs mentioned above. Pages are almost like layers on a map, each one contains different components and displays different visualizations.

Widgets: Each page can contain a multitude of widgets. Different types of widgets are designated by the icon to the left of its name. For my Experience, I used maps, images, text, tabs, and charts, just to name a few. I also gave my widgets descriptive names that related to what they displayed. It helped me keep track of my widgets in an organized manner. 

After adding your widgets, you can customize them to your liking. When a widget is activated, the “Style” tab appears on the right side of the screen. Here, one can alter the size, position, appearance, and other visual effects of each widget.

Overall, Experience Builder is a unique tool that combines the story-telling aspects of Story Maps, the geospatial technology of web maps, and the easy-to-navigate user interface of Dashboards. I would definitely use this tool again for future use, as I can now visualize more ways it can be utilized.