Given the chance to look at making geovisualisation, a pursuit began to bring in data on a scope which would need adjustments and interaction for understanding geography further and further, while still being able to begin the journey with an overview and general understanding of the topic at hand.
This blog post doesn’t unveil a hidden gem theme of border crossing, but demonstrates how an interactive map can share the insights which the user might seek, not being limited to the publisher’s extents or by printed information. Border crossing is selected as topic of interest to observe the navigation that may get chosen with borders, applying this user to a point of view that is similar to those crossing at these points themselves, by allowing them to look at the crossing options, and consider preferences.
To give the user this perspective, this meant beginning to locate and provide the crossing points. The border crossing selected was the US border between Canada and between Mexico, being a scope which could be engaged with the viewer and provide detail, instead of having to limit this data of surface transportation to a single specified scale and extent determined by the creator rather than the user.
Border crossings are a matter largely determined by geography, and are best understood in map rather than any other data representation, unlike attributes like sales data which may still be suitable in an aspatial sense, such as projected sales levels by line graph.
To get specific, the data came from the U.S. Bureau of Transportation Statistics, and was cleaned to be results from the beginning of January 2010 til the end of September 2020. The data was geocoded with multiple providers and selected upon consistency, however some locations were provided but their location could not be identified.
To start allowing any insights for you, the viewer, the first data set to be appended to the map is of the border locations. These are points, and started to identify the distribution of crossing opportunities between the north American countries. If a point could not be appended to the location of the particular office that processed the border entries, then the record was assigned to the city which the office was located in. An appropriate base layer was imported from Mapbox to best display the background map information.
The changes in the range of border crossings were represented by shifts in colour gradient and symbol size. With all the points and their proportions plotted, patterns could begin to be provided as per the attached border attributes. These can illustrate the increases and decreases in entries, such as the crossings in California points being larger compared to entries in Montana.
But is there a measure as to how visited the state itself is, rather than at each entry point? Yes! Indeed there is. In addition to the crossing points themselves, the states which they belong to have also been given measurement. Each state with a crossing is represented on the map displaying a gradient for the value of average crossing which the state had experienced. We knew that California had entry points with more crossings than the points shown in Montana, but now we compare these states themselves, and see that California altogether still experienced more crossings at the border than Montana had, despite having fewer border entry points.
Could there be a way to milk just a bit more of this basic information? Yes. This is where the map begins to benefit from being interactive.
Each point and each state can be hovered over to show the calculated values they had, clarifying how much more or less one case had when compared to another. A state may have a similar gradient, an entry point may appear the same size, but to hover over them you can see which place the locations belong to, as well as the specific crossing value it has. Montana is a state with one of the most numerous crossing points, and experiencing similar crossing frequencies across these entries. To hover over the points we can discover that Sweetgrass, Montana is the most popular point along the Montana border.
In fact, this is how we discover another dimension which belongs to the data. Hovering over these cases we can see a list of transport modes that make up the total crossings, and that the sum was made up of transport by trucks, trains, automotives, busses, and pedestrians.
To discover more data available should simply mean more available to learn, and to only state the transport numbers without their visuals would not be the way to share an engaging spatial understanding. With these 5 extra aspects of the border crossings available, the map can be made to display the distributions of each particular mode.
Despite the points in Alaska typically being one of the least entered among the total border crossings, selecting the entries by train draws attention to Skagway, Alaska, being one of the most used border points for crossing into the US, even though it is not connected to the mainland. Of course, this mapped display paints a strong understanding from the visuals, as though this large entry experienced at Skagway, Alaska is related to the border crossings at Blaine, Washington, likely being the train connection between Alaska and Continental USA.
Overall, this is where the interactive mapping applies. The borders and their entry points have relations largely influenced by geography. The total pedestrian or personal vehicle crossings do well to describe how attractive the region may be on one side rather than another. Searching to discover where these locations become attractive, and even the underlying causes for the crossing to be selected, can be discovered in the map that is interactive for the user, looking at the grounds which the user chooses.
While this theme data layered on top highlights the topic, the base map can help explain the reasons behind it, and both are better understood when interactive. It isn’t necessary to answer one particular thought here as a static map may do, but instead to help address a number of speculative thoughts, enabling your exploration.